Then use the most definitive indicator: look out for same-basename files in the same directory—finding `robot.dx90.vtx` together with `robot.mdl` and `robot.vvd` (sometimes `robot.phy`) is a near-certain sign of a Source model bundle, whereas a simple `something.vtx` without the `dx90/dx80/sw` marker, without `.mdl/.vvd` siblings, and outside a game-style hierarchy only rules out things like Visio XML, not confirm Source, making the suffix pattern plus matching companions the clearest way to classify a binary VTX.
This is why most tools depend on the `.MDL` to load the `.VVD` and `.VTX` and also need `.VMT`/`.VTF` textures to avoid a gray model, so confirming a Source `.VVD` is easiest by checking for matching basenames, a `models\…` folder layout, the `IDSV` header text, or version mismatch errors from incorrect `.MDL` pairing, and what you can actually do with it ranges from viewing with all required files, converting by decompiling via `.MDL`, or identifying it with companion-file cues and a quick header scan.
In Source Engine terms, a `.VVD` file acts as the vertex payload, meaning it holds the per-vertex information that shapes the mesh and guides lighting and texturing without being a full model alone, containing XYZ positions to define geometry, normals for light response, UVs for texture alignment, and tangent-basis data so normal maps can add detail without raising polygon count.
If the model supports animation—like characters or moving creatures—the `.VVD` commonly holds bone index/weight data, allowing vertices to bend smoothly under skeleton motion, and it also carries LOD metadata and fixup tables to adjust vertex references for reduced-detail meshes, forming a structured binary optimized for runtime performance, with `.VVD` giving geometry, shading vectors, UVs, and deformation while `.MDL`/`.VTX` handle high-level model structure, materials, skeletons, and LOD logic.
Should you have any inquiries concerning where by and also how you can work with VVD file description, it is possible to e mail us with our own website. A `.VVD` file is not something you can meaningfully open by itself since it contains only vertex-related data such as positions, normals, UVs, and perhaps weights, but doesn’t describe how those points form a model, how they attach to a skeleton, which bodygroups should render, or what materials apply, leaving the `.MDL` to act as the controller that defines structure, bones, materials, and file linking.
Meanwhile, the `.VTX` files describe optimized draw structures, guiding batching for modes like `dx90`, and without the `.MDL` plus these `.VTX` instructions, tools may read `.VVD` vertices but can’t reliably pick subsets, stitch meshes, handle LOD corrections, or assign proper materials, so results tend to be broken or untextured, which is why Source tools load `.MDL` as the entry point that then pulls in `.VVD`, `.VTX`, and materials.



